Zeros of certain Bessel functions of fractional order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain geometric properties of normalized Bessel functions

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t In this paper, we give a set of sufficient conditions for the normalized form of the generalized Bessel func...

متن کامل

The Zeros of Certain Lommel Functions

Lommel’s function sμ,ν(z) is a particular solution of the differential equation z2y′′ + zy′ + (z2 − ν2)y = zμ+1. Here we present estimates and monotonicity properties of the positive zeros of sμ−1/2,1/2(z) when μ ∈ (0, 1). The positivity of a closely related integral is also considered.

متن کامل

On the Localization and Computation of Zeros of Bessel Functions

The topological degree of a continuous mapping is implemented for the calculation of the total number of the simple real zeros within any interval of the Bessel functions of first and second kind and their derivatives. A new algorithm, based on this implementation, is given for the localization and isolation of these zeros. Furthermore, a second algorithm is presented for their computation empl...

متن کامل

Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions

We apply generalized operators of fractional integration involving Appell's function F 3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fraction...

متن کامل

Lower Bounds for the Zeros of Bessel Functions

Let jp „ denote the nth positive zero of J , p > 0. Then / ■■> 7\'/2 Jp.n > Oln + P) ■ We begin by considering the eigenvalue problem (1) -(•*/)' + x~y = X2x2p-Xy, X,p>0, (2) y(a) =y(\) = 0, 0 < a < 1. For simplicity of notation we will set q = p~x. It is easily verified that the general solution of (1) is y(x) = CxJq(Xqxx/q) + C2Yq(Xqxx'q) and that the eigenvalues are given by Jq(Xq)Yq(Xqax/q)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1945

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1945-0011176-7